STUDIES ON THE NON-ISOTHERMAL KINETICS OF THE THERMAL DECOMPOSITION OF [Cu(NBOCTB)][Cu(NO₃)₄]·H₂O

Yang Zhao-He¹, Li Xiao-Yan² and Wang Ya-Juan³

¹Institute of Crystal Materials, Shandong University, Jinan, Shandong, 250100 ²Department of Chemistry, Shandong University, Jinan, Shandong, 250100 ³Department of Chemistry, Shandong Institute of Education, Jinan, Shandong, 250013, P. R. China

(Received April 18, 1996)

Abstract

The thermal decomposition process of the complex $[Cu(NBOCTB)][Cu(NO_3)_4] \cdot H_2O$ has been studied by TG and DTG technique, and possible intermediates of the thermal decomposition have also been conjectured from the TG and DTG curves. The results suggest that the decomposition of the complex involves five steps:

$$\begin{bmatrix} Cu (NBOCTB) \end{bmatrix} \begin{bmatrix} Cu (NO_3)_{4} \end{bmatrix} \cdot H_2O \xrightarrow{115 - 129 \circ C} \\ \begin{bmatrix} Cu (NBOCTB) \end{bmatrix} \begin{bmatrix} Cu (NO_3)_{4} \end{bmatrix} \xrightarrow{129 - 230 \circ C} Cu_2 (NBOCTB) \xrightarrow{230 - 265 \circ C} \\ Cu_2 (O \cap N)_{4} \xrightarrow{265 - 530 \circ C} Cu_2 (O \cap N)_{4} \xrightarrow{530 - 969 \circ C} Cu_{4} \xrightarrow{1} H \xrightarrow{1}$$

The non-isothermal kinetics of steps 1, 2 and 3 have been studied by means of the Achar and Coats-Redfern method based on TG and DTG curves. Step 1 is a 'Coring and Growth' mechanism (n=1), its kinetic equation may be expressed as: $d\alpha/dt = Ae^{-F_{RT}}(1-\alpha)$. Steps 2 and 3 are both 'two order chemical reaction' mechanisms, their kinetic equations can be expressed as: $d\alpha/dt = Ae^{-F_{RT}}(1-\alpha)^2$.

Keywords: copper compound, coupled technique, kinetics, macrocyclic complex, non-isothermal.

Introduction

There has been recent interest in the study of macrocyclic complexes containing copper atoms as possible models for biochemically important proteins and enzymes [1]. It has been generally accepted that imidazole groups play an important role in the coordination chemistry of the copper ion in many copper-containing proteins [2]. This paper reports the possible process and mechanism of thermal decomposition of the complex of copper(II) with N, N, N', N'-tetra-[(1'-benzyl-2'-benzimidazol) methyl]-

0368–4466/97/ \$ 5.00 © 1997 Akadémiai Kiadó, Budapest

John Wiley & Sons Limited Chichester trans-1,2-diaminocyclohexane (NBOCTB), $[Cu(NBOCTB)][Cu(NO_3)_4]$ H₂O determined on the basis of non-isothermal TG and DTG curves.

Experimental

Preparation of $[Cu(NBOCTB)][Cu(NO_3)_4] \cdot H_2O$

The ligand NBOCTB was prepared as described in [3]. To a DMF solution (50 ml) of NBOCTB (0.25 mmol) in a solution (10 ml) of $Cu(NO_3)_2$ (2 mmol) in ethanol was added with constant stirring under reflux in about 5 min. The resulting green solution was allowed to dry at room temperature in air for about a week to give green crystals of the complex [Cu(NBOCTB)][Cu(NO_3)_4]·H₂O. Single-crystal X-ray diffraction analysis confirmed its molecular formula to be [Cu(NBOCTB)] [Cu(NO_3)_4]·H₂O.

Experimental equipment and conditions

The TG and DTG curves were obtained using a Perkin-Elmer model TGS-2 thermobalance in the temperature range 40–980°C. The heating rate was 5°C min⁻¹ and the flow rate of N₂ gas was 20 ml min⁻¹. The amount of sample used was 3.6568 mg.

Results and discussion

Thermal decomposition process

The TG and DTG curves of [Cu(NBOCTB)][Cu(NO3)4]·H2O are shown in Fig. 1. On the basis of the TG and DTG curves, the thermal decomposition of $[Cu(NBOCTB)][Cu(NO_3)_4]$ ·H₂O was assumed to proceed as shown in Table 1. Non-isothermal kinetics for Steps 1, 2 and 3.

Fig. 1 TG and DTG curves of [Cu(NBOCTB)][Cu(NO₃)₄]·H₂O

Step	Decomposition process	Mass loss/% ^a
1	[Cu(NBOCTB)][Cu(NO ₃) ₄]·H ₂ O <u>115-129°C</u> [Cu(NBOCTB)][Cu(NO ₃) ₄]	1.40 (1.30)
2	[Cu(NOBCTB)][Cu(NO₃)₄] - 129-230 ℃ Cu₂(NBOCTB)	18.81 (17.86)
3	$Cu_2(NOBCTB) \xrightarrow{230-265 \circ C} Cu_2 \left(\bigcirc \bigcirc \\ N \\ V \\ CH_2C_6H_5 \\ CH_2C$	11.52 (11.77)
4	$Cu_{2} \left(\bigcirc \bigcirc \bigvee_{N}^{N} \right)_{4} \xrightarrow{265-530^{\circ}C} Cu_{2} \left(\bigcirc \bigcirc \bigvee_{N}^{N} \right)_{4}$ $\downarrow \\ CH_{2}C_{6}H_{5} \xrightarrow{H} H$	26.21 (25.93)
5	$Cu_2 \left(\bigcirc \bigcirc \bigcirc \bigvee_{l}^{N} \\ H \\ Cu \\ Cu \\$	33.16 (33.99)

Table 1 Thermal decomposition process of $[Cu(NBOCTB)][Cu(NO_3)_4] \cdot H_2O$

^a Values in paratheses are calculated values

Table	2	Kinetic	functions	used	for	the	analysis
-------	---	---------	-----------	------	-----	-----	----------

Function No.	Differential form, $f(\alpha)$	Integral form, $g(\alpha)$
1	1/2α	α^2
2	$[-\ln(1-\alpha)]^{-1}$	$\alpha + (1 - \alpha) \ln(1 - \alpha)$
3	$3[(1-\alpha)^{-1/2}-1]^{-1}/2$	$(1-2\alpha/3)-(1-\alpha)^{2/3}$
4	$3(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}/2$	$[1-\ln(1-\alpha)^{1/3}]^2$
5	(1	$-\ln(1-\alpha)$
6	$3(1-\alpha)[-\ln(1-\alpha)]^{1/3}/2$	$[-\ln(1-\alpha)]^{1/1.5}$
7	$2(1-\alpha)[-\ln(1-\alpha)]^{1/2}$	$[-\ln(1-\alpha)]^{1/2}$
8	$3(1-\alpha)[-\ln(1-\alpha)]^{2/3}$	$[-\ln(1-\alpha)]^{1/3}$
9	$4(1-\alpha)[-\ln(1-\alpha)]^{3/4}$	$[-\ln(1-\alpha)]^{1/4}$
10	$2(1-\alpha)^{1/2}$	$1 - (1 - \alpha)^{1/2}$
11	$3(1-\alpha)^{2/3}$	$1 - (1 - \alpha)^{1/3}$
12	1	α
13	2 α ^{1/2}	$\alpha^{1/2}$
14	$(1-\alpha)^2$	$(1-\alpha)^{-1}-1$
15	$2(1-\alpha)^{3/2}$	$(1-\alpha)^{-1/2}$

Achars equation [4]

$$\ln[(d\alpha/dt)/f(\alpha)] = \ln A - E/(RT)$$
⁽¹⁾

and Coats-Redfern's equation [5]

$$\ln[g(\alpha)/T^2] = \ln(AR)/(\beta E) - E/(RT)$$
⁽²⁾

0.9000

0.9072

3.567

3.491

were applied to the TG and DTG curves to analyse steps 1, 2 and 3.

400.2

401.2

In the above equations, α is the fraction of the reacted material, T is the absolute temperature, $f(\alpha)$ and $g(\alpha)$ are differential and integral mechanism functions, respectively. E and A are the derived apparent activation energy and pre-exponential factor, respectively. R is the gas constant and β is the heating rate.

No. T_{i}/K $(d\alpha/dt)/min^{-1}$ αi 1 391.2 0.2357 3.225 2 393.2 0.2786 3.491 3 394.2 0.3857 3.567 4 395.2 0.4857 3.681 5 396.2 0.5928 3.719 398.2 6 0.7143 3.643 7 399.2 0.7858 3.605

Table 3 Data for step 1 of the decomposition of [Cu(NBOCTB)][Cu(NO₃)₄]·H₂O obtained from the TG and DTG curves

Table 4 Data for step 2 of the decomposition of [Cu(NBOCTB)][Cu(NO₃)₄]·H₂O obtained from the TG and DTG curves

No.	T _i /K	α	$(d\alpha/dt)_i/min^{-1}$
1	471.2	0.1328	0.6500
2	472.2	0.1745	0.9286
3	474.2	0.2675	1.996
4	474.7	0.3137	2.786
5	475.2	0.3708	3.238
6	475.7	0.4394	3.413
7	476.2	0.5016	3.355
8	477.2	0.6241	2.670
9	477.7	0.6709	2.205
10	479.2	0.7646	0.6964

8

9

The possible forms of $f(\alpha)$ and $g(\alpha)$ are listed in Table 2. The original data for steps 1, 2 and 3 determined from the TG and DTG curves are listed in Tables 3, 4 and 5 respectively.

No.	T _i /K	α	$(d\alpha/dt)_{i}/min^{-i}$
1	508.2	0.07404	0.9036
2	513.2	0.2138	1.807
3	515.2	0.2704	2.108
4	518.2	0.3827	2.450
5	522.2	0.5266	2.590
6	525.2	0.6165	2.390
7	527.2	0.6922	2.088
8	529.2	0.7654	1.908
9	531.2	0.8195	1.486
10	533.2	0.8844	0.9839

Table 5 Data for step 3 of the decomposition of [Cu(NBOCTB)][Cu(NO₃)₄]·H₂O obtained from the TG and DTG curves

Using the possible forms of $f(\alpha)$ and $g(\alpha)$ in Table 2, the data in Tables 3, 4 and 5 are analyzed by use of Eqs (1) and (2). For Eqs (1) and (2), the kinetic analyses were completed by the linear least-squares method on a TI-59 computer. The results are shown in Tables 6 -8 respectively.

Table 6 Results of analysis of the data for step 1 in Table 3 using Achar's Eq. (1) and Coats-Redfern's Eq. (2)

	Coats-Red	fern method		Achar method					
No.	$E/kJ \text{ mol}^{-1}$	InA/s ⁻¹	r	$E/kJ \text{ mol}^{-1}$	$\ln A/s^{-1}$	r			
1	371.1	107.5	0.9783	196.3	56.78	0.9688			
2	432.7	1 2 6.0	0.9846	314.6	92.44	0.9909			
3	459.8	132.9	0.9867	367.3	107.2	0.9922			
4	515.7	150.2	0.9892	466.1	137.5	0.9904			
5	300.6	87.17	0.9914	303.5	90.39	0.9662			
6	197.9	55.55	0.9910	201.2	58.96	0.9339			
7	146.9	39.83	0.9910	150.0	43.18	0.8923			
8	95.8	23.91	0.9906	98.8	27.26	0.7957			
9	70.2	15.84	0.9902	73.2	19.22	0.6980			
10	234.2	65.73	0.9875	155.5	44.22	0.9750			
11	254.7	71.69	0.9894	204.9	58.96	0.9709			
12	182.2	50.20	0.9775	7.4	-0.57	0.4759			

	Coats	-Redfern me	thod	Α		
No.	E/kJ mol ⁻¹	InA/s ⁻¹	r	$E/kJ mol^{-1}$	lnA/s ⁻¹	r
13	87.9	21.14	0.9758	-87.1	-29.60	0.9864
14	478.4	142.1	0.9855	600.4	181.5	0.9606
15	141.5	38.77	0.9506	451.6	135.2	0.9626

Table 6 Continued

Table 7 Results of analysis of the data for step 2 in Table 4 using Achar's Eq. (1) and
Coats-Redfern's Eq. (2)

	Coats	-Redfern met	Ac	har method		
No.	EkJ mol ⁻¹	$\ln A/s^{-1}$	r	$E/kJ \text{ mol}^{-1}$	$\ln A/s^{-1}$	r
1	874.5	214.5	0.9889	587.6	144.9	0.7374
2	953.7	234.4	0.9913	752.1	179.3	0.8208
3	985.1	240.9	0.9920	779 .1	191.6	0.8468
4	1003	245.7	0.9906	883.0	218.1	0.8862
5	570.3	138.6	0.9938	459.1	113.3	0.7631
6	377.5	89.65	0.9937	265.9	64.26	0.5656
7	281.2	65.08	0.9936	170.0	39.86	0.4035
8	184.8	40.40	0.9934	73.2	15.04	0.1884
9	136.7	27.96	0.9933	64.7	12.64	0.2453
10	496.8	119.0	0.9923	302.7	72.76	0.5678
11	477.2	113.7	0.9762	354.7	85.62	0.6416
12	432.7	103.2	0.9887	4.6	-2.19	0.6147
13	212.4	47.26	0.9883	-73.4	-22.25	0.1581
14	744.4	183.3	0.9916	770.3	192.7	0.9252
15	148.0	31.38	0.9417	614.5	152.3	0.7657

Table 8	Results	of	analysis	of	the	data	for	step	3	in	Table	5	using	Achar's	Eq.	(1)	and
	Coats-R	edf	ern's Eq.	(2)											-		

	Coat	s-Redfern me	Achar method					
No.	E/kJ mol ⁻¹	lnA/s ⁻¹	r	$E/kJ \text{ mol}^{-1}$	InA/s ⁻¹	r		
1	395.0	85.06	0.9553	206.4	43.86	0.7928		
2	436.1	94.17	0.9674	281.2	60.82	0.8925		
3	454.0	96.94	0.9669	328.8	70.40	0.9262		
4	488.5	105.1	0.9774	372.0	80.70	0.9536		
5	268.0	56.68	0.9851	183.0	39.54	0.9642		
6	175.8	35.15	0.9846	90.7	18.04	0.9301		

	Coats	s-Redfern me	Achar method					
No.	$E/kJ \text{ mol}^{-1}$	InA/s ⁻¹	r	$E/kJ \text{ mol}^{-1}$	lnA/s ⁻¹	r		
7	129.7	24.31	0.9840	44.6	7.21	0.8384		
8	83.6	13.32	0.9829	-1.5	-3.75	0.0674		
9	60.5	7.72	0.9817	-24.6	-9.31	0.7746		
10	227.1	46.17	0.9715	93.7	17.84	0.7826		
11	239.9	48.84	0.9766	123.5	24.44	0.8810		
12	193.2	38.71	0.9534	4.6	-2.47	0.0457		
13	92.2	15.14	0.9492	-96.4	-25.98	0.8011		
14	371.4	81.34	0.9959	361.2	81.54	0.9974		
15	80.5	13.19	0.9503	272.0	59.86	0.9939		

Table 8 Continued

The results in Table 6 clearly show that the values of E and A obtained from the two equations are approximately the same and the correlation coefficients are better when the probable mechanism function is function No. 5 (in Table 2). We concluded that step 1 has a Coring and Growth mechanism (n=1), the non-isothermal kinetic equation being $d\alpha/dt = Ae^{-E/RT}(1-\alpha)$.

From Tables 7 and 8 with the same inference, we consider that steps 2 and 3 both have Two-order Chemical Reaction mechanisms (No. 14). The non-isothermal kinetic equation for steps 2 and 3 is $d\alpha/dt = Ae^{-E/RT}(1-\alpha)^2$.

* * *

This project was supported by the National Natural Science Youth Fundation of China.

References

- 1 N. Sorrell, Tetrahedron, 45 (1989) 3.
- 2 R. D. Rereman and D. J. Kosman, J. Am. Chem. Soc., 99 (1977) 7322.
- 3 X. Y. Li, H. J. Sun and Z. H. Yang, Thermochim. Acta, 249 (1995) 231.
- 4 B. N. Narahari Achar, G. W. Bridley and J. H. Sharp, Proc. Int. Clay Conf., Vol. 1, Jerusalem 1966, p. 67.
- 5 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.